Dynamic nuclear hyperpolarization in liquids.
نویسنده
چکیده
Nuclear magnetic resonance (NMR) spectroscopy is a broadly used analytical method with major applications in chemistry, biochemistry and medicine. Key applications include structural analysis of small molecules, metabolites, larger biomolecules such as proteins, RNA and DNA, and applications in material science. Magnetic resonance imaging (MRI), which is based on the same physical principles, is extensively used in medical diagnostics and represents the most widespread application of NMR. However, NMR is fundamentally limited in sensitivity and this has always restricted its applicability. Hyperpolarization techniques such as dynamic nuclear polarization (DNP) have become a major field of research and development because they hold the promise of increasing the sensitivity of NMR by several orders of magnitude. Such sensitivity enhancements could significantly broaden NMR applications, combining its unique structural information with much higher sensitivity. Unfortunately, there is no single implementation of DNP that would be suitable for a broader range of typical NMR applications. Experimental conditions often circumscribe areas of possible applications. Nevertheless, recent developments point towards experimental protocols providing solutions for specific applications of NMR. This review summarizes the concepts behind DNP in the light of recent developments and potential applications.
منابع مشابه
Room-temperature in situ nuclear spin hyperpolarization from optically pumped nitrogen vacancy centres in diamond
Low detection sensitivity stemming from the weak polarization of nuclear spins is a primary limitation of magnetic resonance spectroscopy and imaging. Methods have been developed to enhance nuclear spin polarization but they typically require high magnetic fields, cryogenic temperatures or sample transfer between magnets. Here we report bulk, room-temperature hyperpolarization of (13)C nuclear ...
متن کاملRoom-Temperature in situ Nuclear Spin Hyperpolarization from Optically-Pumped Nitrogen Vacancy Centers in Diamond
We report bulk, room-temperature hyperpolarization of C nuclear spins observed via highfield nuclear magnetic resonance (NMR). The hyperpolarization is achieved by optical pumping (OP) of nitrogen vacancy defect centers in diamond accompanied by dynamic nuclear polarization (DNP). The technique harnesses the large optically-induced spin polarization of NV− centers at room temperature, which is ...
متن کاملNMR Hyperpolarization Techniques of Gases.
Nuclear spin polarization can be significantly increased through the process of hyperpolarization, leading to an increase in the sensitivity of nuclear magnetic resonance (NMR) experiments by 4-8 orders of magnitude. Hyperpolarized gases, unlike liquids and solids, can often be readily separated and purified from the compounds used to mediate the hyperpolarization processes. These pure hyperpol...
متن کاملEfficient room-temperature nuclear spin hyperpolarization of a defect atom in a semiconductor.
Nuclear spin hyperpolarization is essential to future solid-state quantum computation using nuclear spin qubits and in highly sensitive magnetic resonance imaging. Though efficient dynamic nuclear polarization in semiconductors has been demonstrated at low temperatures for decades, its realization at room temperature is largely lacking. Here we demonstrate that a combined effect of efficient sp...
متن کاملDissolution DNP NMR with solvent mixtures: substrate concentration and radical extraction.
Dynamic nuclear polarization (DNP) followed by sudden sample dissolution, is a topic of active investigation owing to the method's unique prospects for the delivery of NMR spectra and images with unprecedented sensitivity. This experiment achieves hyperpolarization by the combined effects of electron-nuclear irradiation and cryogenic operation; the exploitation of these states occurs following ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Topics in current chemistry
دوره 335 شماره
صفحات -
تاریخ انتشار 2013